A complete list of our publications is available here.
2022

First principles study of the T-center in silicon
2021

Collapse and Revival of an Artificial Atom Coupled to a Structured Photonic Reservoir
Quantum Electrodynamics in a Topological Waveguide
Eunjong Kim, Xueyue Zhang, Vinicius S. Ferreira, Jash Banker, Joseph K. Iverson, Alp Sipahigil, Miguel Bello, Alejandro González-Tudela, Mohammad Mirhosseini, Oskar Painter, Physical Review X 11, 011015 (2021)
Physics Viewpoint: Connecting qubits via a topological waveguide
2020
Superconducting qubit to optical photon transduction
Nature, volume 588, p. 599–603 (2020)
,View Alp’s CIQC talk on this breakthrough, which is the first demonstration of optical photon generation from a superconducting qubit.
Nano-acoustic resonator with ultralong phonon lifetime
,2019
Microwave-to-optical conversion via four-wave mixing in a cold ytterbium ensemble
Telecom-Band Quantum Optics with Ytterbium Atoms and Silicon Nanophotonics
,
2018
(2018) Strain engineering of the silicon-vacancy center in diamond, Physical Review B 97(20), p. 205444, url, doi:10.1103/PhysRevB.97.205444
(2018) Phonon Networks with Silicon-Vacancy Centers in Diamond Waveguides, Physical Review Letters 120(21), p. 213603, url, doi:10.1103/PhysRevLett.120.213603
(2018) Controlling the coherence of a diamond spin qubit through its strain environment, Nature Communications 9(1), p. 2012, url, doi:10.1038/s41467-018-04340-3
(2018) Superconducting metamaterials for waveguide quantum electrodynamics, Nature Communications 9(1), p. 3706, url, doi:10.1038/s41467-018-06142-z
(2018) Photon-mediated interactions between quantum emitters in a diamond nanocavity, Science362(6415), p. 662-665, url, doi:10.1126/science.aau4691
(2018) All-optical nanoscale thermometry with silicon-vacancy centers in diamond, Applied Physics Letters 112(20), p. 203102, url, doi:10.1063/1.5029904
2017
(2017) Quantum Nonlinear Optics with a Germanium-Vacancy Color Center in a Nanoscale Diamond Waveguide, Physical Review Letters 118(22), p. 223603, url, doi:10.1103/PhysRevLett.118.223603
(2017) Optical and microwave control of germanium-vacancy center spins in diamond, Physical Review B 96(8), p. 081201, url, doi:10.1103/PhysRevB.96.081201
(2017) Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout, Physical Review Letters 119(22), p. 223602, url, doi:10.1103/PhysRevLett.119.223602
(2017) Fiber-Coupled Diamond Quantum Nanophotonic Interface, Physical Review Applied 8(2), p. 024026, url, doi:10.1103/PhysRevApplied.8.024026
(2017) Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures, Nature Communications 8(1), p. 15376, pdf, doi:10.1038/ncomms15376
2016
(2016) Narrow-Linewidth Homogeneous Optical Emitters in Diamond Nanostructures via Silicon Ion Implantation, Physical Review Applied 5(4), p. 044010, url, doi:10.1103/PhysRevApplied.5.044010
(2016) An integrated diamond nanophotonics platform for quantum-optical networks, Science 354(6314), p. 847-850, url, doi:10.1126/science.aah6875
2015
(2015) Electron–phonon processes of the silicon-vacancy centre in diamond, New Journal of Physics 17(4), p. 043011, IOP Publishing, url, doi:10.1088/1367-2630/17/4/043011
(2015) Phonon-Induced Population Dynamics and Intersystem Crossing in Nitrogen-Vacancy Centers, Physical Review Letters 114(14), p. 145502, url, doi:10.1103/PhysRevLett.114.145502
(2015) State-selective intersystem crossing in nitrogen-vacancy centers, Physical Review B 91(16), p. 165201, url, doi:10.1103/PhysRevB.91.165201
2014
(2014) Indistinguishable Photons from Separated Silicon-Vacancy Centers in Diamond, Physical Review Letters 113(11), p. 113602, url, doi:10.1103/PhysRevLett.113.113602
(2014) All-Optical Initialization, Readout, and Coherent Preparation of Single Silicon-Vacancy Spins in Diamond, Physical Review Letters 113(26), p. 263602, url, doi:10.1103/PhysRevLett.113.263602
2012
(2012) Quantum Interference of Single Photons from Remote Nitrogen-Vacancy Centers in Diamond, Physical Review Letters 108(14), p. 143601, American Physical Society, url, doi:10.1103/PhysRevLett.108.143601